
The impact of differentiable
programming: how ∂P is enabling

new science in Julia
Matt Bauman, Julia Computing

Agenda
•A review of derivatives

• Throwing things: 
 the inverse problem

• The real science

Derivatives

Derivatives

Derivatives

How to aim a trebuchet
220 kg counterweight
60° release angle
100 m to target

How to aim a trebuchet
220 kg counterweight
55° release angle
100 m to target

How to simulate a trebuchet

Dragging Swinging Flying

http://www.virtualtrebuchet.com/

How to simulate a trebuchet

Dragging Swinging Flying

http://www.virtualtrebuchet.com/

A′�′�q = − r1M22M33 − r2M12M33 − r3M13M22
M13M22M31 − M33 (M11M22 − M12M21)

W′�′�q =
r1M21M33 − r2 (M11M33 − M13M31) − r3M13M21

M13M22M31 − M33 (M11M22 − M12M21)
S′�′�q =

r1M22M31 − r2M12M31 − r3 (M11M22 − M12M21)
M13M22M31 − M33 (M11M22 − M12M21)

r1 = GLAcgmA sin(Aq) + GmP (LAl sin(Aq) + LSsin(Aq+ Sq)) − GmW (LAs sin(Aq) + LW sin(Aq+ Wq))
− LAlLSmP sin(Sq)(A2

w − (Aw + Sw)2) − LAsLWmW sin(Wq)(A2
w − (Aw + Ww)2)

r2 = − LWmW (G sin(Aq+ Wq) + LAs sin(Wq)A2
w)

r3 = LSmP (G sin(Aq+ Sq) − LAl sin(Sq)A2
w)

How to simulate a trebuchet

Dragging Swinging Flying

http://www.virtualtrebuchet.com/

How to a trebuchet

How to a trebuchet

How to aim a trebuchet

How to quickly aim a trebuchet

220 kg weight

55° angle

error 
from fixed 

 target
arbitrary

wind speed

target loc

• Once trained, this really is fast:

• Even the training is fast (under a minute)

• And fun games can be had with corruption of
inputs and controls to add robustness

How to quickly aim a trebuchet

r1 = GLAcgmA sin(Aq) + GmP (LAl sin(Aq) + LSsin(Aq+ Sq)) − GmW (LAs sin(Aq) + LW sin(Aq+ Wq))
− LAlLSmP sin(Sq)(A2

w − (Aw + Sw)2) − LAsLWmW sin(Wq)(A2
w − (Aw + Ww)2)

r2 = − LWmW (G sin(Aq+ Wq) + LAs sin(Wq)A2
w)

r3 = LSmP (G sin(Aq+ Sq) − LAl sin(Sq)A2
w)

How to understand a trebuchet
• What if I didn’t know one of the terms in our system?

• But could describe most everything else?

A′�′�q = − r1M22M33 − r2M12M33 − r3M13M22
M13M22M31 − M33 (M11M22 − M12M21)

W′�′�q =
r1M21M33 − r2 (M11M33 − M13M31) − r3M13M21

M13M22M31 − M33 (M11M22 − M12M21)
S′�′�q =

r1M22M31 − r2M12M31 − r3 (M11M22 − M12M21)
M13M22M31 − M33 (M11M22 − M12M21)

A derivative three ways
• Derivative with respect to the control parameters

• Derivative with respect to an approximation network

• Derivative with respect to a subset of the model itself

220 kg weight

55° angle

error 
from fixed 

 target

error 
from fixed 

 target

Differentiable Programming is going to disrupt
Scientific Modeling and Simulation

Ongoing work by Julia Computing and others in pharmaceuticals,
Engineering, Chemistry, Manufacturing, Batteries, Climate, …

How do we simultaneously use both sources of
knowledge?

Universal differential equations

Modern experimental procedures quickly
captures terabytes of data

But “big data” often pales in comparison
to the knowledge embedded into each

model

Scientific ML is model-based and data-efficient

Universal Differential Equations for Scientific Machine Learning
(arXiv:2001.04385)

NLME

NCA

QSP

BE

Deep
NLME

CTS

Deep Learning discovers systems models from
data
Find neural networks so the model matches

the data,
then find the equations which implies new
chemical reactions and pharmacologically-

relevant systems

Improve QSP and PBPK
productivity

Beyond Deterministic Models in Drug Discovery and
Development (Trends in Pharmacological Sciences)

NLME

NCA

QSP

BE

Deep
NLME

CTS

DeepNLME in Practice: Automated Discovery of
Dynamics

Use all prior scientific knowledge (dosage regimens, covariate relations, etc.)
Train neural networks to maximize population likelihoods (LaplaceI, FOCEI,
NaivePooled)
Then predict PK(/PD) profiles of new patients

Or let Pumas discover the mechanistic model:
It’ll spit out the best approximating mathematical equation

and showcase
diagnostics
demonstrating the
predicted
equation is reliable!

Accelerated
building energy
efficiency models

● Automation of model order reduction on DAEs via
neural DAE surrogate dimensional reductions

● Interaction with component-based modeling to
allow for generating accelerated building models
with transferred learning components

Simulations of physical systems involve a combination of compiler passes, ODE / DAE
solvers, and machine learning.

Differentiable Programming ties all these parts together.

Scientific Machine Learning
https://sciml.ai

Noteworthy new capabilities

• Combine Science and Machine
Learning

• Comprehensive Differential Equation
Solvers

• GPU acceleration
• MTK.jl: A DSL for modeling and

simulation
• Automatic differentiation

Accelerate
Extremely Stiff
Equations

Accelerating Simulation of Stiff Nonlinear
Systems using Continuous-Time Echo State
Networks
NeurIPS 2020 ML4Eng Workshop, NeurIPS
2020

Optimization of materials
for battery-powered aircraft

● GPU accelerate small (30) DAE battery models
● Utilize neural surrogates for global sensitivities
● Automatically refine equations from data
● Use these models to identify material

properties
● Propose optimal experimental design
● Closed loop: direct collaboration with materials

scientists, restructure model with new data

Automated Climate Parameterizations

High fidelity 15,000x acceleration
over direct
3D simulation. Traditionally done by
hand!

Approximate only the
vertical flux

Capturing missing physics in climate model parameterizations using
neural differential equations
Ali Ramadhan, John Marshall, Andre Souza, Gregory LeClaire Wagner,
Manvitha Ponnapati, Christopher Rackauckas

Reinforcement Learning with AlphaZero.jl

• Simple: Core algorithm
is 2000 lines of Julia

• Extensible: Generic
interfaces allow new
games and learning

• Fast: 10-100x faster
than other high-level
alternatives

• Scalable: Combines
distributed, multi-
threaded and multi-GPU
parallelism

Jonathan Laurent
https://github.com/jonathan-laurent/

AlphaZero.jl

https://github.com/jonathan-laurent/AlphaZero.jl
https://github.com/jonathan-laurent/AlphaZero.jl

Celeste was our first peta-scale Bayesian Inference application

Turing.jl makes Probabilistic Programming available more broadly

Thank You

• Electrification, batteries, climate change
and the pandemic are reshaping entire
industries

• Differentiable Programming is at the heart
of improving the pace of innovation

• In Julia, ∂P is being driven by real-world
applications in modeling and simulation

• These advances are accelerating product
design for engineers and scientists

• In short, Julia is building a language
ecosystem and compiler toolchain for
modern science

