
JuliaCon 2019  
Parallel Computing

Workshop
Welcome!

Parallel Computing workshop
• Download JuliaPro version 1.1.1.1

• https://juliacomputing.com/products/juliapro

• Install it!

• Download the workshop materials

• github.com/mbauman/ParallelWorkshop2019

• Open Julia Pro, go to File -> Add Project Folder…
and select the downloaded folder

https://juliacomputing.com/products/juliapro

Troubleshooting tips
• Ensure running Julia 1.1.

• Running on JuliaPro works best

• Make sure you’re in the “Project folder” specifically
for the downloaded folder (not one level higher)

• If running on vanilla Juno + Julia, run  
]activate 
]rm	CredentialsHandler 
]instantiate

Goals
• Understand modern parallel architectures

• Write and run a multithreaded algorithm on your
own computer

• Learn how to structure your program to avoid race
conditions

• Treat your computer like a cluster and run multi-
process code on it

What is happening to
our computers?

Historical microprocessor trends

Historical microprocessor trends

Parallelism is required
for best performance

Computers today:
• Have single processor cores that can do more than

one thing at once

• Have multiple cores/processors (up to 50 cores on a
chip, multiple chips)

• Can network multiple computers together

• May have specialized compute hardware (GPU, TPU)

Fastest supercomputers
in the world

Fastest supercomputers
in the world

4,608 nodes
2 processors per node
22 cores per processor

6 GPUs per node

Parallel Challenges
• Chasing peak performance 

 Need a fast language for biggest benefit

• We learn to reason about & write programs serially  
 Need to safely express parallelism

• Often dovetails with large datasets  
 Need to consider data movement costs

• Vast array of parallel hardware configurations  
 Need to pick the strategy that fits your system

Parallel Strategies
• Making the most of one core:  

 high performance Julia and SIMD

• Making the most of one computer:  
 multithreading

• Making the most of multiple computers/clusters:  
 distributed computing

• Enabling external accelerators:  
 GPUs and TPUs

High Performance Julia

High Performance Julia
Single-instruction, multiple-data (SIMD)

four instructions one instruction!

High Performance Julia
Single-instruction, multiple-data (SIMD)

• Happens automatically!

High Performance Julia
Single-instruction, multiple-data (SIMD)

• Happens automatically (if it’s safe)!
• Requires “straight line” code: no if statements,
@inbounds array accesses, no breaks, only call
“small” functions, etc.

• Limited to basic processor instructions (simple
arithmetic)

High Performance Julia
Single-instruction, multiple-data (SIMD)

• @simd can help it happen more frequently
• Allows floating point re-associativity

• Using smaller data types can increase parallelism
• Up to 512 bits can process 32 Float32s at a time!

High Performance Julia
• Understanding data movement costs

Actual cost Scaled “human”
cost

One CPU Cycle 0.4 ns 1 s
Level 1 cache access 0.9 ns 2 s
Level 2 cache access 2.8 ns 7 s
Level 3 cache access 28 ns 1 min
Main memory access ~100 ns 4 min

NVMe SSD I/O ~25 µs 17 hours
SSD I/O 50-150 µs 1.5-4 days

Rotational disk I/O 1-10 ms 1-9 months
Internet call: SF to NYC 65 ms 5 years

https://www.prowesscorp.com/computer-latency-at-a-human-scale

Multithreading
Hands on!

Parallel Algorithm
Design

Demo

Tasks
Quick demo

Distributed
Computation

Towards clusters!

Mental model

Distributed demo!

GPUs and more

What’s a CPU look like?

What’s a GPU look like?

NVidia GK110

What’s a GPU look like?
• 15 “multiprocessors”
• Up to 6 warps per

multiprocessor

What’s a GPU look like?
• 15 “multiprocessors”
• Up to 6 warps per

multiprocessor
• Each warp is 32 threads

Warp programming

		A();B();			X();Y();			

GPUs: Using JuliaGPU to
make it easy

• Move data to the GPU
• CuArray is specialized to

operate on the GPU and
favors Float32s

• In particular, you can create
your own “GPU kernels”
with broadcast fusion

• You can also manually write
CUDA code

TPU: the Tensor
Programming Unit

Scales to pods (512 TPU cores - 4.3 PF16/s on
ResNet50)

Fischer et al. Automatic Full Compilation of Julia
Programs and ML Models to Cloud TPUs
(arXiv:1810.09868)

https://arxiv.org/abs/1810.09868

Julia on TPUs
• Unchanged Language Semantics on

TPUs

• Control Flow

• Multiple Dispatch

• Data Structures

• Share code between CPU/GPU/TPU

• Integration with native distributed
computing facilities (WIP)

• Goal: Make TPU pods and traditional
HPC systems look the same to the
programmer. Seamless retargeting.

julia>	X	=	randn(1000,	1000)	
[...]	
julia>	X*X	 	 	 	#	Runs	on	CPU	
1000×1000	Array{Float64,2}:	
[...]	

julia>	X	=	randn(1000,	1000)	|>	gpu	
[…]	
julia>	X*X	 	 	 	#	Runs	on	GPU	
1000×1000	CuArray{Float64,2}:	
[...]	

julia>	X	=	randn(1000,	1000)	|>	tpu	
[…]	
julia>	X*X	 	 	 	#	Runs	on	TPU	
1000×1000	XRTArray{Float64,(1000,	1000),2}:	
[...]

Happy parallel computing
Happy parallel computing
Happy parallel computing
Happy parallel computing

