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Welcome!



Parallel Computing workshop
• Download JuliaPro version 1.1.1.1 

• https://juliacomputing.com/products/juliapro 

• Install it! 

• Download the workshop materials 

• github.com/mbauman/ParallelWorkshop2019 

• Open Julia Pro, go to File -> Add Project Folder… 
and select the downloaded folder

https://juliacomputing.com/products/juliapro


Troubleshooting tips
• Ensure running Julia 1.1. 

• Running on JuliaPro works best 

• Make sure you’re in the “Project folder” specifically 
for the downloaded folder (not one level higher) 

• If running on vanilla Juno + Julia, run  
			]activate 
			]rm	CredentialsHandler 
			]instantiate



Goals
• Understand modern parallel architectures 

• Write and run a multithreaded algorithm on your 
own computer 

• Learn how to structure your program to avoid race 
conditions 

• Treat your computer like a cluster and run multi-
process code on it



What is happening to 
our computers?



 

Historical microprocessor trends



Historical microprocessor trends



Parallelism is required 
for best performance



Computers today:
• Have single processor cores that can do more than 

one thing at once 

• Have multiple cores/processors (up to 50 cores on a 
chip, multiple chips) 

• Can network multiple computers together 

• May have specialized compute hardware (GPU, TPU)



Fastest supercomputers 
in the world



Fastest supercomputers 
in the world

4,608 nodes 
2 processors per node 
22 cores per processor 

6 GPUs per node



Parallel Challenges
• Chasing peak performance 

    Need a fast language for biggest benefit 

• We learn to reason about & write programs serially  
    Need to safely express parallelism 

• Often dovetails with large datasets  
    Need to consider data movement costs 

• Vast array of parallel hardware configurations  
    Need to pick the strategy that fits your system



Parallel Strategies
• Making the most of one core:  

      high performance Julia and SIMD

• Making the most of one computer:  
      multithreading 

• Making the most of multiple computers/clusters:  
      distributed computing 

• Enabling external accelerators:  
      GPUs and TPUs



High Performance Julia



High Performance Julia
Single-instruction, multiple-data (SIMD)

four instructions one instruction!



High Performance Julia
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• Happens automatically!



High Performance Julia
Single-instruction, multiple-data (SIMD)

• Happens automatically (if it’s safe)! 
• Requires “straight line” code: no if statements, 
@inbounds array accesses, no breaks, only call 
“small” functions, etc. 

• Limited to basic processor instructions (simple 
arithmetic)



High Performance Julia
Single-instruction, multiple-data (SIMD)

• @simd can help it happen more frequently 
• Allows floating point re-associativity 

• Using smaller data types can increase parallelism 
• Up to 512 bits can process 32 Float32s at a time!



High Performance Julia
• Understanding data movement costs

Actual cost Scaled “human” 
cost

One CPU Cycle 0.4 ns 1 s
Level 1 cache access 0.9 ns 2 s
Level 2 cache access 2.8 ns 7 s
Level 3 cache access 28 ns 1 min
Main memory access ~100 ns 4 min

NVMe SSD I/O ~25 µs 17 hours
SSD I/O 50-150 µs 1.5-4 days

Rotational disk I/O 1-10 ms 1-9 months
Internet call: SF to NYC 65 ms 5 years

https://www.prowesscorp.com/computer-latency-at-a-human-scale



Multithreading
Hands on!



Parallel Algorithm 
Design

Demo



Tasks
Quick demo



Distributed 
Computation

Towards clusters!



Mental model



Distributed demo!



GPUs and more



What’s a CPU look like?



What’s a GPU look like?

NVidia GK110



What’s a GPU look like?
• 15 “multiprocessors” 
• Up to 6 warps per 

multiprocessor



What’s a GPU look like?
• 15 “multiprocessors” 
• Up to 6 warps per 

multiprocessor 
• Each warp is 32 threads



Warp programming

		A();B();			X();Y();			



GPUs: Using JuliaGPU to 
make it easy

• Move data to the GPU 
• CuArray is specialized to 

operate on the GPU and 
favors Float32s 

• In particular, you can create 
your own “GPU kernels” 
with broadcast fusion 

• You can also manually write 
CUDA code



TPU: the Tensor 
Programming Unit

Scales to pods (512 TPU cores - 4.3 PF16/s on 
ResNet50)

Fischer et al. Automatic Full Compilation of Julia  
Programs and ML Models to Cloud TPUs  
(arXiv:1810.09868)

https://arxiv.org/abs/1810.09868


Julia on TPUs
• Unchanged Language Semantics on 

TPUs 

• Control Flow 

• Multiple Dispatch 

• Data Structures 

• Share code between CPU/GPU/TPU 

• Integration with native distributed 
computing facilities (WIP) 

• Goal: Make TPU pods and traditional 
HPC systems look the same to the 
programmer. Seamless retargeting.

julia>	X	=	randn(1000,	1000)	
[...]	
julia>	X*X	 	 	 	#	Runs	on	CPU	
1000×1000	Array{Float64,2}:	
[...]	

julia>	X	=	randn(1000,	1000)	|>	gpu	
[…]	
julia>	X*X	 	 	 	#	Runs	on	GPU	
1000×1000	CuArray{Float64,2}:	
[...]	

julia>	X	=	randn(1000,	1000)	|>	tpu	
[…]	
julia>	X*X	 	 	 	#	Runs	on	TPU	
1000×1000	XRTArray{Float64,(1000,	1000),2}:	
[...]



Happy parallel computing 
Happy parallel computing 
Happy parallel computing 
Happy parallel computing


