
  

 

Abstract—In neuroprostheses that use functional electrical 

stimulation (FES) to restore motor function, closed-loop 

feedback control may compensate for muscle fatigue, 

perturbations and nonlinearities in the behavior of the effected 

muscles. Kinematic state information is naturally represented 

in the firing rates of primary afferent neurons, which may be 

recorded with multi-electrode arrays at the level of the dorsal 

root ganglia (DRG). Previous work in cats has shown that it is 

feasible to estimate the kinematic state of the hind limb with a 

multivariate linear regression model of the neural activity in 

the DRG. In this study we extend these results to estimate the 

limb state in real-time during intramuscular stimulation in an 

anesthetized cat. Furthermore, we used the limb state estimates 

as feedback to a finite state FES controller to generate 

rudimentary walking behavior. This work demonstrates the 

feasibility of using DRG activity in a closed-loop FES system. 

I. INTRODUCTION 

UNTIONAL electrical stimulation (FES) holds great 

potential to restore motor function after brain and spinal 

cord injury. Many current FES applications operate in open-

loop mode [1], in which the intended function is not 

automatically regulated. In closed-loop control, however, it 

is possible to dynamically change stimulation parameters in 

response to feedback from the limb, enabling compensation 

for muscle fatigue [2] and corrections to perturbations of the 

extremity [3]. Continuous feedback control has yet to be 

fully implemented in FES applications due to challenges in 

the mounting, positioning, reliability, and inconveniences of 

external sensors [4], and the need for a wide variety of 

sensors for adequate detection of multi-joint limb activity 

[5]. 

There is a growing effort to incorporate natural neural 

feedback into closed-loop FES systems [6]. These 

approaches typically record from a single nerve bundle and 

are thus constrained to partial information and control of a 
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limb, such as a single joint [7]. Our approach is to record 

sensory activity from dorsal root ganglia (DRG) to estimate 

the state of the entire limb.  

DRG contain the cell bodies for afferent fibers where they 

enter the spinal cord. Electrodes inserted into DRG allow 

extracellular recording of action potentials from individual 

neurons with a high signal to noise ratio. High density arrays 

of penetrating microelectrodes allow large numbers of 

isolated neurons to be recorded simultaneously, for 

concurrent tracking of muscle spindle (limb proprioception), 

cutaneous (touch) and Golgi tendon organ (force) afferents 

[8]. Access to this sensory information at a single location is 

a significant benefit over recording from multiple peripheral 

nerve locations or with multiple external sensors. Recent 

studies have demonstrated that limb position and velocity 

can be decoded from signals recorded from lumbar DRG in 

cats [9], [10]. 

The goal of this study was to extract limb information 

directly from primary afferent DRG neurons with implanted 

electrodes and apply the estimated limb state towards online 

feedback control of FES-controlled walking movements in 

an anesthetized cat. We were successful at obtaining 

rudimentary walking patterns with a closed-loop controller 

that successfully rejected stimulation artifacts and 

compensated for perturbations to the desired limb path. 

II. METHODS 

A. Experiment Setup 

All procedures were approved by the Institutional Animal 

Care and Use Committee of the University of Pittsburgh. 

Intact adult cats were anesthetized with a ketamine-xylazine 

mixture and maintained on isoflurane (1-2.5%) for the 

duration of each experiment. Vitals, including blood 

pressure, heart rate, respiratory rate, core body temperature, 

oxygen saturation and end-tidal CO2 were monitored 

continuously and maintained within normal limits.  

A laminectomy was performed to expose the lumbar 

spinal cord and DRG. The cat was placed in a custom frame, 

which supported the torso, spine and pelvis while allowing 

the hind limb to move freely through its full range of motion 

(Fig. 1). The head and torso were further supported by a 

stereotaxic frame and vertebrae clamp, and bone screws 

were place bilaterally in the iliac crests to tether the pelvis 

with stainless steel wire. Penetrating micro-electrode arrays 

(90 channel MultiPort arrays, Blackrock Microsystems) 

were inserted into the left L6 and L7 DRG (10x4 and 10x5 
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arrays, respectively). 

Neural data from the DRG arrays was sampled at 25 kHz 

with a real-time biopotential signal processing system (RZ-

2, Tucker Davis Technologies) and bandpass filtered (300-

3000 Hz). Spike thresholds on each channel were 

automatically set at a level above the noise floor. Multiple 

spikes on a channel were discriminated online using a k-

means clustering algorithm. Spike events were binned in 

50ms windows for each channel on the recording hardware 

(RZ-2). 

LED markers were placed over the left iliac crest and the 

left hip, knee, ankle and metatarsal-phalangeal (MTP, 

utilized as endpoint reference) joints. Kinematic data was 

recorded at 120 Hz with a 6-camera motion capture system 

(Impulse, PhaseSpace Motion Capture). The hip, knee, and 

ankle joint angles were computed in real-time using custom 

developed MATLAB software (The MathWorks, Inc.). The 

limb segments between each marker were measured and 

entered into the software so that the endpoint location could 

be calculated from the joint angles. A haptic robot (Phantom 

Premium 1.5HF, SensAble Technologies Inc.) was attached 

to the plantar surface of the left foot and used to create a 

virtual floor, rendering ground reaction forces during the 

stance phase of the step cycle (Fig. 1). 

A total of nine patch (epimysial) and stainless steel needle 

(intramuscular) stimulating electrodes were placed in the 

primary flexor and extensor muscles that span the hip, knee 

and ankle joints for FES. Suitable locations for electrode 

placement were found by stimulating each muscle with a 

mono-polar probe, to test for the approximate motor end-

point location, before electrode implantation. 

B. Real-time Encoding of Firing Rate Models 

We implemented a multivariate linear regression model 

for on-line decoding of limb position from a population of 

neurons. The firing rates (FR) were obtained by convolving 

the binned spike counts with a triangular window spanning 

150ms. We employed a joint based reference frame (hip, 

knee, ankle) and predicted the joint angles by modeling them 

as a linear function of the observed firing rates, such that 

           
    

        (1) 

where    refers to the set of neurons that were classified in 

real-time by the clustering algorithm, and    are 

uncorrelated random errors. Based on the measured limb 

segment lengths and the estimated joint angles, the limb 

endpoint was also estimated.  

C. Stimulus Artifact Rejection 

We implemented a synchronous event detection algorithm 

on the RZ-2 real-time processor to eliminate stimulation 

artifacts from the recorded neural data (Fig. 2). We defined a 

detection window (400 µs) such that if more than 60% of the 

channels recorded a threshold-crossing event within it, all 

events in the corresponding rejection window (RW) were 

excluded from the calculation of the instantaneous unit firing 

rates. The RW (2 ms) was chosen to be sufficiently large to 

eliminate stimulus artifacts. The instantaneous firing rate of 

each unit was subsequently calculated on the real-time 

processor (RZ-2) and streamed to the real-time controller 

described in the next section..  

D. Finite State Stimulation Controller 

Neural firing rates and limb kinematic measurements were 

streamed in real-time to a finite state controller implemented 

in LabView (National Instruments). The controller estimated 

the limb kinematics in 50 ms windows and generated 

charge-balanced stimulation commands to a 16-channel 

stimulator (FNS16, CWE Inc.).  

The stimulation channels were synchronized to use a 

shared constant frequency (30 Hz) and constant pulse-width 

(200 μs) with independent variable stimulation amplitude, to 

reduce the impact of stimulus artifact rejection and increase 

the usable recording time. 

States within the controller were associated with 4 phases 

of the gait cycle: toe strike, toe lift, swing initiation, and end 

swing (Fig. 3). A set of stimulation channels and amplitudes 

(0.5-20 mA) was chosen for each state to evoke the desired 

movement, based on trial and error for the targeted 

movement path. State transitions were set to occur when the 

limb endpoint entered and remained in the desired region for 

at least 200 ms. 

 
Fig. 1.  Experimental setup. Blackrock MultiPort arrays (40- and 50-

channels) were inserted in the L6 and L7 DRG for recording neural 

activity and active LED markers tracked the hindlimb kinematics. 
Electrodes were placed in muscles spanning the hip, knee and ankle 

joints. A haptic robot (not pictured) was attached to the foot to 

generate forces for simulating ground contact. 

 
Fig. 2.  Stimulus artifact rejection scheme as implemented on the 

recording hardware (RZ2). If the count of channels with events within 

a detection window (DW = 400 µs) exceeded the threshold (   
    of all channels), then all  recorded spikes within the rejection 

window (       ) were ignored by the real-time controller. 
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E. Experimental Testing 

The plantar surface of the foot was attached to a robot 

manipulator (VS-6556E/GM, DENSO Robotics), which 

passively moved the limb through a series of center-out 

movements. During this time, the reverse regression model 

was generated, to estimate the position of the limb. Next the 

Denso robot was replaced with the haptic robot. Closed-loop 

FES trials were performed in which either the stimulation 

controller was unimpeded or perturbations were introduced 

to hinder progress. 

III. RESULTS 

We were able to estimate the limb position in real-time 

while rejecting stimulus artifacts and demonstrate closed-

loop control of a hind limb with FES in one anesthetized cat 

experiment. 

A. Real-time decoding of primary afferents 

An example of real-time decoding using reverse 

regression is presented in Fig. 4. At the start was a training 

phase in which the kinematics and instantaneous firing rates 

were used to create and then continuously update regression 

models for the kinematic parameters (joint angles). Note that 

as time proceeds during the training phase, the accuracy of 

the estimated kinematics improves. At 60 s, the regression 

models were fixed and subsequently used the observed firing 

rates to estimate the limb kinematics.  

B. Closed-loop Control of FES 

Using the state controller and real-time limb position 

estimate, we were able to obtain closed-loop control of the 

hind limb. Fig. 5 presents two step cycles from one trial in 

which the state controller was able to maintain the limb 

within the desired trajectory. As the foot moved from end 

swing to toe strike, there were small oscillations resulting 

from contact with the simulated floor with forces rendered 

by the haptic robot (state 4 in Fig. 5). Subsequently, the foot 

pushed back, lifted up and moved forward before repeating 

the cycle. The stimulation sequence on the implanted 

stimulation sites is indicated at the bottom of the figure. Four 

distinct stimulation channel patterns were responsible for 

transitioning between the different stages in the step cycle.  

We performed seven trials in which the leg was under 

continuous closed-loop FES control, each lasting 1 min, with 

1-2 min between each trial. Starting near the mid-point of 

each trial, fatigue was observed, leading to a decrease in 

both step height (2-16%) and speed of motion as the trial 

progressed. Although the limb endpoint progressively did 

not step as high at the ends of each cycle within a trial, it 

was still able to achieve the desired state changes required 

for successful behavior. 

In another scenario, we performed three trials with 

 
Fig. 4.  Example of real-time estimation of joint angles during passive 

movement. During the training phase, the actual joint angles (black, in 
degrees) and the neural firing rates were used to continuously update 

the model. Simultaneously, the decoder used the most recent model to 

estimate the joint position (gray). After the training phase, the final 

model was used to estimate the kinematics. 

 
Fig. 5.  Example of online feedback control of limb position during 

two step cycles. The actual limb posture at each state transition is 

represented by the stick figures at top, with the actual (solid line) and 
estimated (dotted line) position of the toe indicated. As the controller 

transitioned between the different states, different stimulator channel 

combinations were generated (horizontal black bars at bottom). The 
second step cycle is a perturbation trial in which the limb was 

manually held for 1.4 seconds (indicated by shaded box) to prevent 

progression to state 4. 

 
Fig. 3. State space controller diagram and limb schematic. Locations of 

LED markers on the limb are noted on the schematic 

(MTP = metatarsal-phalangeal joint; endpoint). The state transition 
regions were defined in the plane of movement (boxes 1-4, representing 

toe strike, toe lift, swing initiation, and end swing). After the limb 

endpoint entered and dwelled 200 ms in a region, the controller 
changed to the next state. The trace demonstrates an example path of 

the limb endpoint through two stepping cycles. 
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multiple perturbations by obstructing the movement of the 

leg during stimulation. This resulted in a prolonged 

stimulation period in the current state, as the controller 

correctly identified from the neural activity that the leg had 

not changed states (second step cycle in Fig. 5). Once the 

obstruction was removed, the limb moved forward to the 

desired state and continued through the normal cycle. 

IV. DISCUSSION 

In this study we demonstrated the feasibility of using 

ensemble neural recordings in hindlimb DRG to provide 

kinematic state feedback for a simple closed-loop FES 

controller that was able to generate walking-like behavior. 

Real-time estimation of the limb position from DRG firing 

rates was performed with successful rejection of stimulation 

artifacts. The state controller was able to dynamically 

respond to changes in the limb position and perturbations in 

the path without manual intervention. 

This work presents an advanced form of closed-loop 

control, as the entire state of the limb was included in the 

controller. Current approaches for closed-loop FES regulate 

a single joint [2], [7] or require multiple external sensors [5]. 

Our approach utilizing DRG afferent recordings presents a 

significant improvement, as this location provides access to 

sensory neurons from the entire leg that convey position, 

velocity, and/or force information for the limb. 

As this study presents an initial feasibility demonstration, 

there are several key opportunities to improve the 

performance. Although the estimates of limb state were 

sufficient to drive the state-machine during these closed-loop 

trials, the accuracy of the estimated limb state feedback 

could be increased (note that estimated and actual 

kinematics do not match exactly in Fig. 4 and Fig. 5). Some 

decoding algorithms, such as state-space regression models, 

have demonstrated significant improvements over reverse 

regression models but are not currently tractable in real-time 

[10]. Other decoding methods, such as Bayesian classifiers 

or fuzzy neural networks may achieve similar improvements 

while remaining computationally tractable [11]. As the 

stimulation parameters are driven by a state-machine, 

Bayesian classifiers may simply predict the likelihood of the 

leg being in one of the switching states. Such a method 

might result in more robust state switching but will lose the 

ability to track the individual limb-state variables. 

Furthermore, the finite state controller could be replaced by 

more sophisticated controller designs that may improve 

performance and stability of the system. For example, a 

continuous PID controller may prove to be more robust and 

would enable reference trajectory tracking for more refined 

movements [12]. 

Epimysial and intramuscular electrodes, as we used here, 

have long been a standard approach for FES control of the 

lower leg [1]. Although these methods allow for direct 

activation of muscles, fatigue and incomplete muscle 

recruitment may occur, as we observed. Alternate electrode 

interfaces are under development, such as selective 

stimulation of peripheral nerves for graded muscle 

recruitment and intra-spinal micro stimulation to activate 

synergies of muscles, as are improvements in stimulation 

control algorithms for adaptive compensation [1]. 

Integration of this feedback controller with an improved FES 

electrode system may yield improved muscle recruitment 

and function. 

In summary, a closed-loop neural prosthesis comprises a 

complex system integrating different challenges such as 

afferent recording, kinematic state decoding, actuating the 

muscles and the accompanying control algorithms. The 

results presented here show that with the current technology, 

it is possible to develop a rudimentary online FES controller 

with sensory feedback which is able to generate walking like 

behavior in a closed-loop fashion. Continuing efforts to 

improve FES control, afferent decoding and interface 

technology should be pursued to enable the use of closed-

loop FES neuroprostheses in the future. 
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